提示:请记住本站最新网址:http://www.yunmengshuyuan.cc!为响应国家净网行动号召,本站清理了所有涉黄的小说,导致大量书籍错乱,若打开链接发现不是要看的书,请点击上方搜索图标重新搜索该书即可,感谢您的访问!
    449章<br />
    博弈论,这个名词恐怕很多人都不陌生。<br />
    它的历史已经无法考证,但作为数学的运筹学方法的一种,随着时代的不断变迁,已经形成一套成熟的法则,运用到经济和贸易战争当中。<br />
    如非合作博弈中的纳什均衡,不完全信息市场博弈中的阿克罗夫商品市场理论等。<br />
    同样,对于国际期货市场,博弈论依旧能够发挥出它的强大能力。<br />
    因此,程诺在经过长时间的思索之后,决定使用博弈论的方法来解决这道难题。<br />
    首先,期货市场中各国博弈是典型博弈竞局。<br />
    典型的博弈竞局中,必要参与者、各国理性假设、最优化选择保证利益最大化、博弈的约束条件、信息化博弈的重要性、各方进行一定妥协下最优选择形成策略集是典型博弈市场的必要因素。<br />
    而国际期货市场参与主体是各国家之间以信息为轴心,在国际期货市场约定下通过投机行为所形成策略进而买入卖出的金融场所。<br />
    另一点,期货市场是典型的“零和博弈”。<br />
    什么是零和博弈?<br />
    从名字就可以看出,零和博弈是指在交易过程中各方收益相加为零,即一方收益等于另一方损失。典型期货市场一般都是“零和博弈”,在期货价格上涨时,当价格上涨时,多头方会获利,空头方会蒙受损失,反之亦然。<br />
    最后一点,博弈市场是信息导向型市场。也就是说期货市场中存在信息不对称性。<br />
    知道了这三点,那剩下的东西就很简单了。<br />
    丹顿还有乔亚还在琢磨如何将博弈论和期货市场联系起来,但这边的程诺已经拿过笔和草稿纸在上面验证自己的想法。<br />
    两人见程诺已经开始动笔,便结束思考,视线落在程诺笔下的公式上。<br />
    程诺的运算方法很简单。<br />
    既然知道期货市场是零和博弈,那就可以将收益函数简化为:利润=收益-成本=价差成本-(资金成本+交易费用)。<br />
    接下来,根据资金与信用程度(资信状况)、信息、决策这四个方面的差异进行公式计算。<br />
    活动活动手腕,沉吟几秒,低下头,程诺唰唰唰的在纸上写着:<br />
    【设p0是买入价格,p1为卖出价格,价格p与流通数量一般呈现是单调递增但下凹的的函数,即p'(q)>0,p''(q)<0。】<br />
    【假设qmax为市场最大交易量,代表期货市场上投机量最大时所对应的价格。超过临界交易量价格再拉升属于“泡沫价格”。期货市场上只有一个交易大国时,该国能控制市场价格,此时进行最大收益求解:<br />
    r1(q1)=p*q=(pt(q1)-p0)*q1<br />
    式中r1代表收益,pt代表大国在倒卖过程中目前期货市场价格,p0代表期货市场的买进价格。】<br />
    …………<br />
    程诺在丹顿和乔亚两人崇拜的目光下行云流水的列着公式。<br />
    另一边,坐在礼堂前三排的那群大佬们并没有忘记此行的目的,起身后三三两两的聚在一起走向后排。<br />
    他们之所以过来观摩最后一场竞赛,可并不是为了简单的过来当个吉祥物,干坐几个小时后宣布一下结果。<br />
    这里的四十多位学生皆是两国数学界最顶尖的那一批人才。<br />
    大佬们也想知道,这群国家的新鲜血液,究竟能表现出何种的实力。<br />
    耳闻不如眼见。<br />
    所以众人打算亲自观摩一下众人解题的过程。<br />
    奥尔丁所长和另外两个老人笑呵呵的聚在一块往后排走。<br />
    能和奥尔丁所长走到一块的肯定也不是普通任务,另外两位老人,一位是瑛国皇家科学院数学分院的副院长,另一位是德古国波恩大学数学院的院长。<br />
    两人论地位,丝毫不弱于奥尔丁这位剑桥大学数理研究所所长。<br />
    同时,这三位也是今晚过来观赛嘉宾中地位最高的三位。<br />
    十五支队伍中,剑桥大学坐在比较靠后的位置。<br />
    三位老人先是走到比较靠前的波恩大学的三人小团体旁。<br />
    伯恩大学的三位博士生在激烈的讨论后完成了分工,他们采用的是数学建模的方法,通过构造国际期货市场的数学模型来进行进一步剖析,求解。<br />
    三人驻足在旁边看了几分钟,便接着往后走。<br />
    “破题方法虽然常规,但建模的思路比较清奇,比常规方法要减少一半的时间,不错,不错。”奥尔丁率先评判道。<br />
    旁边的皇家科学院数学分院的副院长捋着胡须,也是连连点头,“稳妥中不失创新,芬迪,你可是教出了一群好学生啊!”<br />
    波恩大学数学院的院长芬迪也两位老友对自己的学生评价极高,也有一种与有荣焉的感觉,“哈哈,虽然他们三位并不是我培养出来的,但这三人在我们学校名气颇高,如此表现,也算是不堕他们的名气。”<br />
    芬迪院长扭头看向奥古丁,“奥古丁,我听说你们剑桥大学的三位学生在这次的交流活动中表现的很是亮眼,我们不妨过去看看?”<br />
    “当然可以。”奥尔丁视线在礼堂内转了一圈,找到程诺三人的位置,对两位老人指道,“就在那边,我们过去看看。”<br />
    说完,便慢慢走到程诺三人身边。<br />
    程诺等人依旧是程诺一个人在写,丹顿和乔亚在一边盯着看。没有一人说话,除了纸上的沙沙声再没有什么多余的声音。<br />
    见到剑桥大学这边的工作状态,奥尔丁三人都有些疑惑。<br />
    不过当看到程诺在纸上列的公式后,便很快沉浸进去。<br />
    程诺并不知道在自己背后有三位大佬正盯着看,依旧按照自己的节奏写着:<br />
    【当市场中只存在一个大国时,大国会默认将交易量做到合理最大交易量,把价格拉升到临界价格从而赚取最大差价。期货市场上存在多个大国时,假设期货市场存在m个大国(m&amp;amp;gt;1)时,第n个大国收益函数为:<br />
    r(qm)=qa(pt(qm)-p)<br />
    pt(qm)是市场上第n个大国交易时所代表的价格, qm是所有大国交易量总和,第i个大户收益最大化时交易量设为qa。根据最大化条件有以下等式:<br />
    αra/αqa=qa*pt'(qm*)+pt(qm*)-p0=0.】
都市言情相关阅读More+

正义利剑

佚名

官途:从基层科长到权力巅峰

佚名

全民:亡灵召唤师,一人即天灾

佚名

从救下同学妈妈开始混富婆圈

李知漫

官场:平步青云

佚名

新生,我要造福一方

佚名
合作伙伴